1,549 research outputs found

    A Hamilton-Jacobi approach to non-slow-roll inflation

    Get PDF
    I describe a general approach to characterizing cosmological inflation outside the standard slow-roll approximation, based on the Hamilton-Jacobi formulation of scalar field dynamics. The basic idea is to view the equation of state of the scalar field matter as the fundamental dynamical variable, as opposed to the field value or the expansion rate. I discuss how to formulate the equations of motion for scalar and tensor fluctuations in situations where the assumption of slow roll is not valid. I apply the general results to the simple case of inflation from an ``inverted'' polynomial potential, and to the more complicated case of hybrid inflation.Comment: 21 pages, RevTeX (minor revisions to match published version

    Summary: Working Group on QCD and Strong Interactions

    Full text link
    In this summary of the considerations of the QCD working group at Snowmass 2001, the roles of quantum chromodynamics in the Standard Model and in the search for new physics are reviewed, with empahsis on frontier areas in the field. We discuss the importance of, and prospects for, precision QCD in perturbative and lattice calculations. We describe new ideas in the analysis of parton distribution functions and jet structure, and review progress in small-xx and in polarization.Comment: Snowmass 2001. Revtex4, 34 pages, 4 figures, revised to include additional references on jets and lattice QC

    The scalar bi-spectrum during preheating in single field inflationary models

    Full text link
    In single field inflationary models, preheating refers to the phase that immediately follows inflation, but precedes the epoch of reheating. During this phase, the inflaton typically oscillates at the bottom of its potential and gradually transfers its energy to radiation. At the same time, the amplitude of the fields coupled to the inflaton may undergo parametric resonance and, as a consequence, explosive particle production can take place. A priori, these phenomena could lead to an amplification of the super-Hubble scale curvature perturbations which, in turn, would modify the standard inflationary predictions. However, remarkably, it has been shown that, although the Mukhanov-Sasaki variable does undergo narrow parametric instability during preheating, the amplitude of the corresponding super-Hubble curvature perturbations remain constant. Therefore, in single field models, metric preheating does not affect the power spectrum of the large scale perturbations. In this article, we investigate the corresponding effect on the scalar bi-spectrum. Using the Maldacena's formalism, we analytically show that, for modes of cosmological interest, the contributions to the scalar bi-spectrum as the curvature perturbations evolve on super-Hubble scales during preheating is completely negligible. Specifically, we illustrate that, certain terms in the third order action governing the curvature perturbations which may naively be expected to contribute significantly are exactly canceled by other contributions to the bi-spectrum. We corroborate selected analytical results by numerical investigations. We conclude with a brief discussion of the results we have obtained.Comment: v1: 15 pages, 4 figures; v2: 15 pages, 4 figures, discussion and references added, to appear in Phys. Rev.

    Low temperature spin fluctuations in geometrically frustrated Yb3Ga5O12

    Full text link
    In the garnet structure compound Yb3Ga5O12, the Yb3+ ions (ground state effective spin S' = 1/2) are situated on two interpenetrating corner sharing triangular sublattices such that frustrated magnetic interactions are possible. Previous specific heat measurements evidenced the development of short range magnetic correlations below 0.5K and a lambda-transition at 54mK (Filippi et al. J. Phys. C: Solid State Physics 13 (1980) 1277). From 170-Yb M"ossbauer spectroscopy measurements down to 36mK, we find there is no static magnetic order at temperatures below that of the lambda-transition. Below 0.3K, the fluctuation frequency of the short range correlated Yb3+ moments progressively slows down and as the temperature tends to 0, the frequency tends to a quasi-saturated value of 3 x 10^9 s^-1. We also examined the Yb3+ paramagnetic relaxation rates up to 300K using 172-Yb perturbed angular correlation measurements: they evidence phonon driven processes.Comment: 6 pages, 5 figure

    The Luminosity Function Of Field Galaxies And Its Evolution Since z=1

    Get PDF
    We present the B-band luminosity function and comoving space and luminosity densities for a sample of 2779 I-band selected field galaxies based on multi-color data from the CADIS survey. The sample is complete down to I_815 = 22 without correction and with completeness correction extends to I_815=23.0. By means of a new multi-color analysis the objects are classified according to their spectral energy distributions (SEDs) and their redshifts are determined with typical errors of delta z <= 0.03. We have split our sample into four redshift bins between z=0.1 and z=1.04 and into three SED bins E-Sa,Sa-Sc and starbursting (emission line) galaxies. The evolution of the luminosity function is clearly differential with SED. The normalization phi* of luminosity function for the E-Sa galaxies decreases towards higher redshift, and we find evidence that the comoving galaxy space density decreases with redshift as well. In contrast, we find phi* and the comoving space density increasing with redshift for the Sa-Sc galaxies. For the starburst galaxies we find a steepening of the luminosity function at the faint end and their comoving space density increases with redshift.Comment: 15 pages, 14 figures, accepted by Astronomy&Astrophysic

    Astrophysical Constraints on Modifying Gravity at Large Distances

    Get PDF
    Recently, several interesting proposals were made modifying the law of gravity on large scales, within a sensible relativistic formulation. This allows a precise formulation of the idea that such a modification might account for galaxy rotation curves, instead of the usual interpretation of these curves as evidence for dark matter. We here summarize several observational constraints which any such modification must satisfy, and which we believe make more challenging any interpretation of galaxy rotation curves in terms of new gravitational physics.Comment: References added, submitted to Classical & Quantum Gravit

    Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation

    Full text link
    Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA

    A two-scalar model for a small but nonzero cosmological constant

    Get PDF
    We revisit a model of the two-scalar system proposed previously for understanding a small but nonzero cosmological constant. The model provides solutions of the scalar-fields energy ρs\rho_s which behaves truly constant for a limited time interval rather than in the way of tracker- or scaling-type variations. This causes a mini-inflation, as indicated by recent observations. As another novel feature, ρs\rho_s and the ordinary matter density ρm\rho_m fall off always side by side, but interlacing, also like (time)2^{-2} as an overall behavior in conformity with the scenario of a decaying cosmological constant. A mini-inflation occurs whenever ρs\rho_s overtakes ρm\rho_m, which may happen more than once, shedding a new light on the coincidence problem. We present a new example of the solution, and offer an intuitive interpretation of the mechanism of the nonlinear dynamics. We also discuss a chaos-like nature of the solution.Comment: 9 pages plus 7 figure

    The proton and deuteron F_2 structure function at low Q^2

    Get PDF
    Measurements of the proton and deuteron F2F_2 structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range 0.06<Q2<2.80.06 < Q^2 < 2.8 GeV2^2, and Bjorken xx values from 0.009 to 0.45, thus extending the knowledge of F2F_2 to low values of Q2Q^2 at low xx. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for Q2<2Q^2<2 GeV2^2 at the low and high xx-values. Down to the lowest value of Q2Q^2, the structure function is in good agreement with a parameterization of F2F_2 based on data that have been taken at much higher values of Q2Q^2 or much lower values of xx, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low xx remains well described by a logarithmic dependence on Q2Q^2 at low Q2Q^2.Comment: 3 figures, submitted pape

    Cosmological measurement of neutrino mass in the presence of leptonic asymmetry

    Get PDF
    We show that even the smallest neutrino mass consistent with the Super--Kamiokande data is relevant for cosmological models of structure formation and cosmic microwave background (CMB) anisotropies, provided that a relic neutrino asymmetry exists. We calculate the precision with which a 0.07 eV neutrino mass could be extracted from CMB anisotropy and large-scale structure data by the future Planck satellite and Sloan Digital Sky Survey. We find that such a mass can be detected, assuming a large relic neutrino asymmetry still allowed by current experimental data. This measurement of the absolute value of the neutrino mass would be crucial for our understanding of neutrino models.Comment: 8 pages, 2 PS figures, version to be publishe
    corecore